Methoden im (Praxis) Vergleich

Inhaltsverzeichnis

Ergebnisse LiDAR bei JUWI Methoden Diskussion

Verfügbarkeitssteigerung bei Windmessungen LiDAR bei JUWI

- JUWI führt derzeit Windmesskampagnen mit 22 LiDAR-Geräten an unterschiedlichen Standorten durch.
 - (4x Windcube 2.0, 14x Windcube 2.1 & 4x Windcube 2.1 XP)
- Das TSA bei JUWI hat mehr als 100 LiDAR-Messungen bei einer Gesamtmessdauer von > 60 Jahren erfolgreich durchgeführt.
- Derzeit werden 18 Standorte gleichzeitig vermessen, die übrigen vier Geräte befinden sich in Wartung oder in der Verifikation.
- Bei allen Messungen handelt es sich um Jahresmessungen, die vollständig den Anforderungen der Technischen Richtlinie TR6 Rev.12 entsprechen.

Ziel: Maximale Prognosesicherheit am Standort

Verfügbarkeitssteigerung bei Windmessungen Lidar bei JUWI

Grundlagen zur Durchführung hochwertiger Messungen durch JUWI:

- Planung der Messung nach Kriterien der aktuellen technischen Richtlinie TR6 Rev.12
- Durchführung von Verifikation vor und nach jedem Messeinsatz
- Wöchentliche Überprüfung der Messdaten und der Funktionstüchtigkeit der Geräte
- Kurze Einsatzzeiten bei technischen Problemen am Gerät
- Parallele Überwachung der Daten sowie
 Messabnahme durch akkreditierte Unternehmen

Verfügbarkeitssteigerung bei Windmessungen LiDAR bei JUWI

Trotz hochwertiger Datenkontrolle kann es aus verschiedenen Gründen in der geplanten Nabenhöhe zu Verfügbarkeiten von weniger als 80% kommen. Mögliche Gründe können sein:

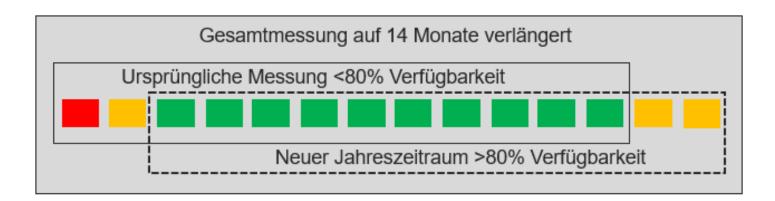
- Hohe Wolkendichte / Nebel
- Niederschlag
- Zu klare Luft
- Technische Probleme am Gerät oder der Energieversorgung
- Vandalismus

Methoden - Übersicht

Zum Erreichen der Verfügbarkeit von 80% in der geplanten Nabenhöhe kommen verschiedene Möglichkeiten in Frage:

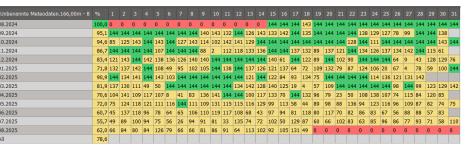
- Verlängerung des Messzeitraumes
- Veränderung der Datenfilterung in den 10-Minuten Daten
- Auffüllen über Regression logarithmierter Daten in den jeweiligen10 Minuten Zeitschritten
- Auffüllen über Windshear in den jeweiligen 10 Minuten Zeitschritten
- Auffüllen über MCP-Verfahren über verschiedene Höhen

Alle Methoden werden in der Branche in unterschiedlicher Art und Weise angewandt. Ziel ist es im Folgenden, an ausgewählten Standorten die unterschiedlichen Methoden zu vergleichen.

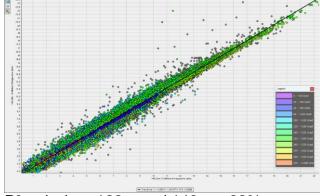


Methoden – Verlängerung des Messzeitraumes

Verlängerung des Messzeitraumes, um Monate mit zu geringen Verfügbarkeiten auszugleichen und die Gesamtverfügbarkeit auf über 80% zu heben.


- Es werden keine Daten ergänzt
- Funktioniert nur, wenn Datenlücken zu Beginn oder am Anfang einer Messung auftreten
- Bei konstant geringer Verfügbarkeit muss eine Verlängerung der Messung über einen größeren Zeitraum erfolgen
- Verschiebung der Zeitplanung in den nachfolgenden Messkampagnen

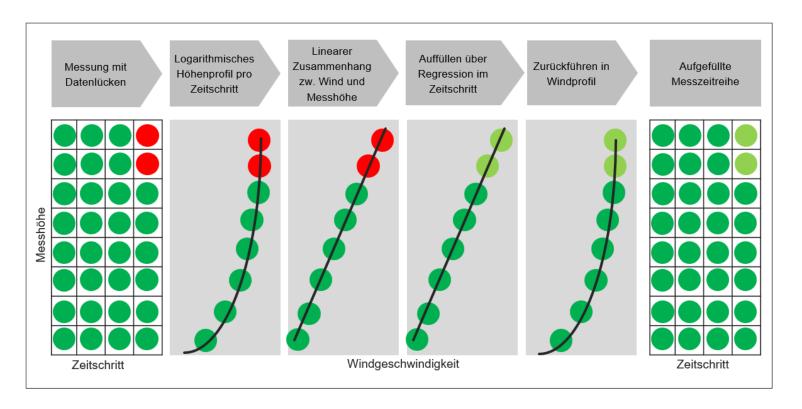
Methoden – **Datenfilterung**


- Die Datenfilterung in den 10-Minuten Daten wird von 80% auf niedrigere Werte abgesenkt
- Das Kriterium der 80% Verfügbarkeit im Gesamtmesszeitraum bleibt erhalten
- Erhöhung der als gültig geltenden Daten hilft, das 80%
 Messkriterium zu erreichen
- Die unter abweichenden Filterkriterien als gültig geltenden Daten müssen hinsichtlich Datenkonsistenz überprüft werden
- Es werden keine Daten synthetisch erzeugt, sondern vorhandene Daten mit minimal schlechterer Qualität in der Gesamtauswertung verwendet

Autoflag 80 Filterung: <80% Datenverfügbarkeit

Autoflag 70 Filterung: >80% Datenverfügbarkeit

R² zwischen 166m und 140m > 98%

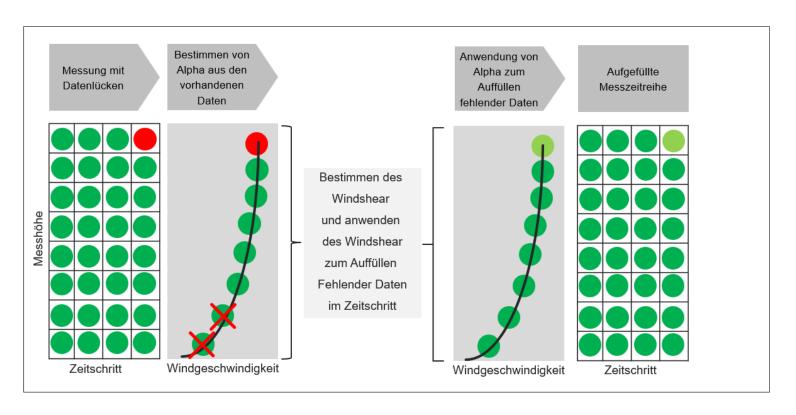


Verfügbarkeitssteigerung bei Windmessungen Methoden - Auffüllen über Regression logarithmierter Daten

- Daten werden in jedem Zeitschritt aufgefüllt
- Unabhängigkeit von:
 - Windrichtung
 - Veränderten Umweltbedingungen
- Relativ kleine Datenbasis

Variable Parameter

- Zulässige Mindesthöhe
- Mindesthöhen je Zeitschritt
- R² bei der Korrelation

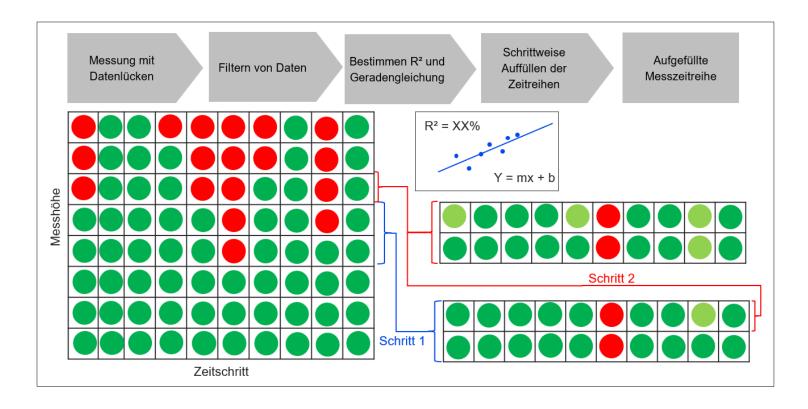

Auffüllen von Datenlücken in LiDAR Messzeitreihen

Methoden – Auffüllen über Windshear

- Daten werden in jedem Zeitschritt aufgefüllt
- Unabhängigkeit von:
 - Windrichtung
 - Veränderten Umweltbedingungen

Variable Parameter

- Anzahl der Höhen zur Berechnung des Windprofils
- Mindesthöhe zur Berechnung des Windprofils

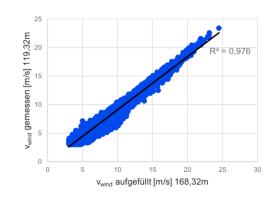


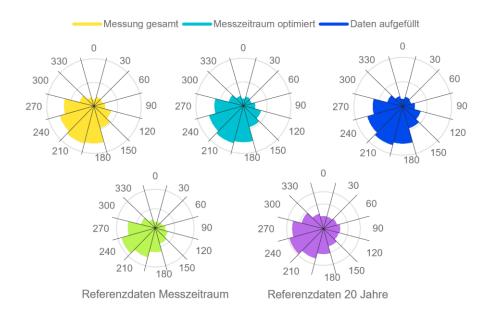
Methoden - Auffüllen über MCP

- Daten werden für ganze Höhen über MCP-Verfahren aufgefüllt.
- Etabliertes Verfahren
- Abhängigkeit von Windrichtung und Witterungsbedingungen
- Datenfilterung zwingend notwendig (Richtung, Luftdichte, Jahreszeit)

Variable Parameter

- R² Kriterium
- Höhe der Vergleichszeitreihen





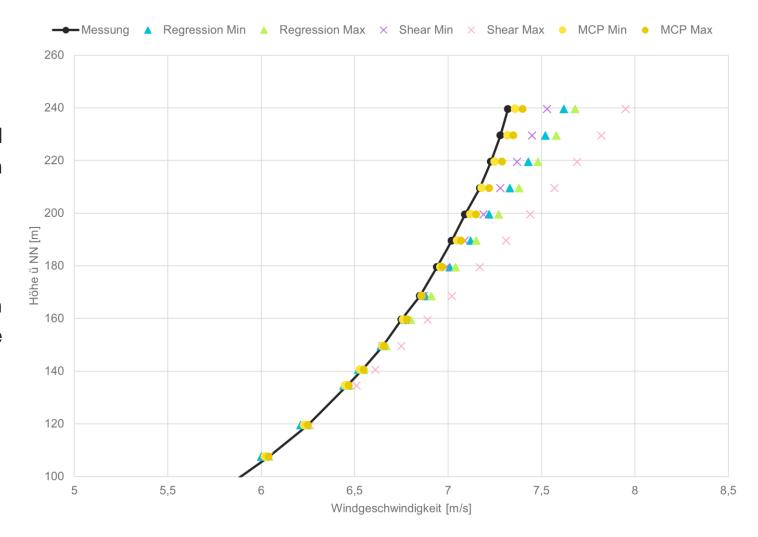
Methoden – **Bewertungskriterien und Datenbasis**

Kriterien für die Bewertung der aufgefüllten Datenzeitreihen:

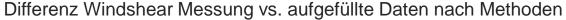
- R² aus der Regressionsanalyse mit benachbarten Messhöhen
- Tagesgang
- Richtungsverteilung
- Windprofil

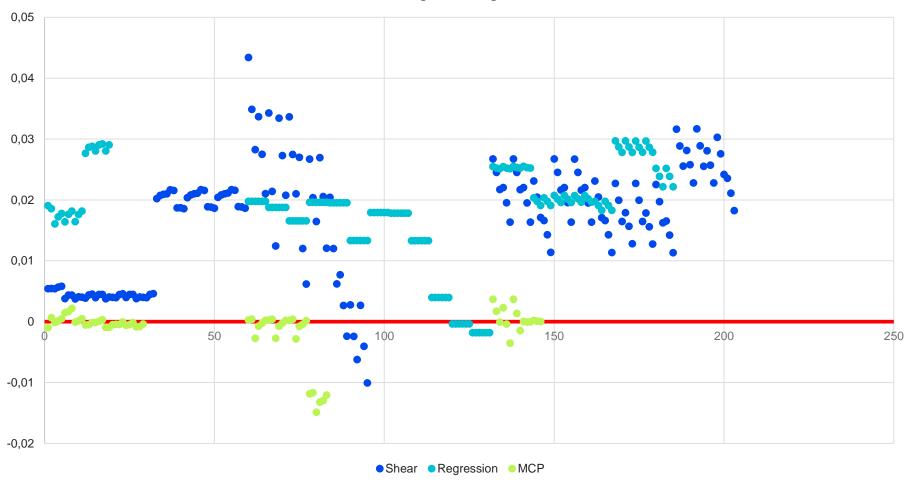
Datenbasis

LiDAR-Messungen an 4 verschiedenen Standorten mit insgesamt rund 500 Berechnungen.

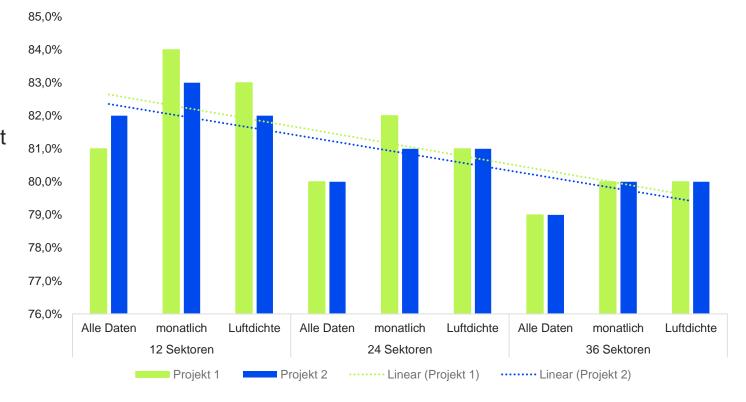

Aufgrund der aktuell noch geringen Datenbasis sind alle Ergebnisse als vorläufig zu betrachten.

Ergebnisse – Methodenvergleich


 Stabile Ergebnisse im Windprofil und geringsten Abweichungen zu den gemessenen Werten bei MCP.


 Größere Schwankungen bei Regression und Shear-Methode - ohne eindeutige Tendenz.

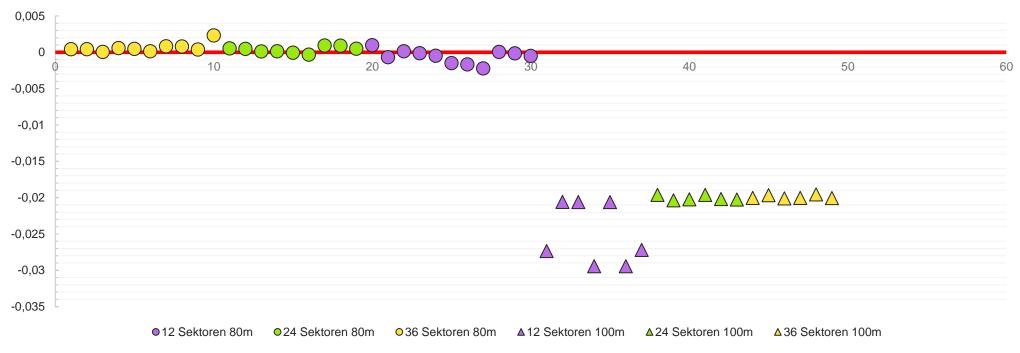
Ergebnisse – Methodenvergleich



Ergebnisse – MCP-Methode

Einfluss der Parameter Klassifikation und Sektorenanzahl

- Mehr Sektoren → niedrigere Verfügbarkeit
- Klassifikation nach Luftdichte oder Monat führt zu einer höheren Verfügbarkeit


Verfügbarkeit der aufgefüllten Daten in Zielhöhe in Abhängigkeit der Klassifikation und Sektorenanzahl

Ergebnisse – MCP-Methode

Differenz Windshear Messung vs aufgefüllte Daten nach Parametern

Ergebnisse – Weitere Erkenntnisse

Zusammenhänge zwischen Parametern und Ergebnissen

- Mindesthöhe und Mindestabstand
 - niedrigere Mindesthöhen und geringere Abstände führen zu höhere Verfügbarkeit in Zielhöhe
 - Mindesthöhe 60 100 m liefern gute Ergebnisse
 → nicht zu niedrig, um Boden-Effekte zu vermeiden
- Auswahl von R²
 - Regression: kaum Einfluss auf Windgeschwindigkeit und Verfügbarkeit
 - MCP: deutlicher Einfluss auf Windgeschwindigkeit und Verfügbarkeit

- MCP-Methoden füllen Datenlücken mit den geringsten Fehlergrößen im Vergleich zu anderen Ansätzen
- Bei LiDAR-Geräten der neueren Generation treten Datenlücken deutlich seltener auf
- Die Validierung einer Methode zur Auffüllung von Datenlücken mit verlässlichen Ergebnissen bleibt weiterhin wichtig

Zeit für Fragen

Vielen Dank für Ihre Aufmerksamkeit.

Jan Thomas Beißwenger
Senior Consultant
Site Assessment

Erika Rosati
Expert Wind & Site
Site Assessment

